unidec.IsoDec.IsoGen package

Submodules

unidec.IsoDec.IsoGen.isogen_base module

class unidec.IsoDec.IsoGen.isogen_base.HighMassNeuralNetwork(isolen=1024, vectorlen=6)

Bases: Module

Very simple neural net for generating the isotope distirbution.

forward(x)

Define the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

class unidec.IsoDec.IsoGen.isogen_base.IsoGenDatasetBase(inputs, dists, vectors)

Bases: Dataset

Dataset class for IsoGen

class unidec.IsoDec.IsoGen.isogen_base.IsoGenEngineBase(isolen=128)

Bases: object

check(seq)
create_data_loaders(traindata, testdata, batchsize=32, testbatchsize=2048)
inputs_to_vectors(inputs)
predict(seq)
setup_data(dists, seqs, trainper=0.9)
train(train_fname, epochs=10, forcenew=False, inputname=None)
train_multiple(train_fnames, epochs=10, forcenew=False, inputname=None)
class unidec.IsoDec.IsoGen.isogen_base.IsoGenModelBase(working_dir=None, isolen=128, vectorlen=20, savename='isogenpep_model_', modelid=0)

Bases: object

General model class for isotope distrubution generation.

Includes functions to train, evaluate, and predict isotope distributions.

batch_predict(vectors)

Predict the isotope distribution for a list of masses :param masses: List of mass values :return: Predicted isotope distribution intensity vectors

evaluate_model(dataloader)

Evaluate the model on a test set. :param dataloader: Test DataLoader object :return: None

get_model(modelid)

Get the model based on the model ID. :param modelid: Model ID integer. Options are 0, 1, and 2. :return: None

load_model()

Load model from savepath. :return: None

predict(vec)

Predict the isotope distribution for a given mass :param mass: Mass value :return: Predicted isotope distribution intensity vector

run_training(train_dataloader, test_dataloader, epochs=10, lossfn='mse', forcenew=False, save=True)
save_model()

Save model to savepath. :return: None

setup_model(modelid=None, forcenew=False)

Setup model and load if savepath exists. Set device. :param modelid: Model ID passed to self.get_model() :param forcenew: Whether to force starting over from scratch on model parameters :return: None

setup_training(lossfn='mse', forcenew=False)

” Setup loss function, optimizer, and scheduler. :param lossfn: Loss function to use. Options are “crossentropy”, “weightedcrossentropy”, and “focal”. :return: None

train_model(dataloader, lossfn='mse', forcenew=False)

Train the model on a DataLoader object. :param dataloader: Training DataLoader object :param lossfn: Loss function to use. Options are “crossentropy”, “weightedcrossentropy”, and “focal”. :return: None

class unidec.IsoDec.IsoGen.isogen_base.IsoGenNeuralNetwork(isolen=128, vectorlen=20)

Bases: Module

Very simple neural net for generating the isotope distirbution.

forward(x)

Define the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

unidec.IsoDec.IsoGen.isogen_base.save_model_to_binary(model, outfile)

unidec.IsoDec.IsoGen.isogen_tools module

unidec.IsoDec.IsoGen.isogen_tools.dnaseq_to_dist(dnaseq, isolen=128, cutoff=0.001)
unidec.IsoDec.IsoGen.isogen_tools.dnaseq_to_vector(dnaseq)
unidec.IsoDec.IsoGen.isogen_tools.formula_to_vector(formula)

Convert a chemical formula to a vector of atom counts :param formula: Chemical formula string :return: Vector of atom counts

unidec.IsoDec.IsoGen.isogen_tools.get_dist_from_formula(formula, isolen=128, cutoff=0.001)
unidec.IsoDec.IsoGen.isogen_tools.isojim(isolist, length=128)

Thanks to Jim Prell for Sketching this Code

unidec.IsoDec.IsoGen.isogen_tools.makemass(testmass)
unidec.IsoDec.IsoGen.isogen_tools.mass_to_dist(mass, isolength=128)
unidec.IsoDec.IsoGen.isogen_tools.mass_to_vector(x)
unidec.IsoDec.IsoGen.isogen_tools.peptide_to_dist(peptide)
unidec.IsoDec.IsoGen.isogen_tools.peptide_to_vector(peptide)
unidec.IsoDec.IsoGen.isogen_tools.rnaseq_to_dist(rnaseq, isolen=128, cutoff=0.001)
unidec.IsoDec.IsoGen.isogen_tools.rnaseq_to_vector(rnaseq)

unidec.IsoDec.IsoGen.isogenatom module

unidec.IsoDec.IsoGen.isogenatom_synthetic_training module

unidec.IsoDec.IsoGen.isogenatom_trainingdata module

unidec.IsoDec.IsoGen.isogenmass module

unidec.IsoDec.IsoGen.isogenpep module

unidec.IsoDec.IsoGen.isogenpep_synthetic_training module

unidec.IsoDec.IsoGen.isogenpep_trainingdata module

unidec.IsoDec.IsoGen.isogenrna module

unidec.IsoDec.IsoGen.isogenrna_trainingdata module

Module contents